3.2.78 \(\int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [178]

Optimal. Leaf size=161 \[ \frac {12 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {8 a^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{7 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a^2 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}} \]

[Out]

2/7*a^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)+4/5*a^2*sin(d*x+c)/d/sec(d*x+c)^(3/2)+8/7*a^2*sin(d*x+c)/d/sec(d*x+c)^(1
/2)+12/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^
(1/2)*sec(d*x+c)^(1/2)/d+8/7*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),
2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3873, 3854, 3856, 2719, 4130, 2720} \begin {gather*} \frac {4 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {8 a^2 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{7 d}+\frac {12 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^2/Sec[c + d*x]^(7/2),x]

[Out]

(12*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (8*a^2*Sqrt[Cos[c + d*x]]*Ell
ipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(7*d) + (2*a^2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (4*a^2*Sin[
c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (8*a^2*Sin[c + d*x])/(7*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=\left (2 a^2\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx+\int \frac {a^2+a^2 \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} \left (6 a^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} \left (12 a^2\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a^2 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}}+\frac {1}{7} \left (4 a^2\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (6 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {12 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a^2 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}}+\frac {1}{7} \left (4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {12 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {8 a^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{7 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a^2 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.31, size = 149, normalized size = 0.93 \begin {gather*} \frac {a^2 \left (\frac {672 i \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-168 i-80 i \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right ) \sec (c+d x)+85 \sin (c+d x)+28 \sin (2 (c+d x))+5 \sin (3 (c+d x))\right )\right )}{140 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^2/Sec[c + d*x]^(7/2),x]

[Out]

(a^2*(((672*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] + 2*(-16
8*I - (80*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x]
 + 85*Sin[c + d*x] + 28*Sin[2*(c + d*x)] + 5*Sin[3*(c + d*x)])))/(140*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 272, normalized size = 1.69

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (40 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-116 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+126 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-39 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+10 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-21 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{35 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(272\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-4/35*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(40*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-
116*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+126*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-39*sin(1/2*d*x+1/2*c)^
2*cos(1/2*d*x+1/2*c)+10*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/
2*c),2^(1/2))-21*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^
(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/
2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.48, size = 170, normalized size = 1.06 \begin {gather*} -\frac {2 \, {\left (10 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 10 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (5 \, a^{2} \cos \left (d x + c\right )^{3} + 14 \, a^{2} \cos \left (d x + c\right )^{2} + 20 \, a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{35 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-2/35*(10*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 10*I*sqrt(2)*a^2*weierstra
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c
os(d*x + c) - I*sin(d*x + c))) - (5*a^2*cos(d*x + c)^3 + 14*a^2*cos(d*x + c)^2 + 20*a^2*cos(d*x + c))*sin(d*x
+ c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{2} \left (\int \frac {1}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx + \int \frac {2}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {1}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2/sec(d*x+c)**(7/2),x)

[Out]

a**2*(Integral(sec(c + d*x)**(-7/2), x) + Integral(2/sec(c + d*x)**(5/2), x) + Integral(sec(c + d*x)**(-3/2),
x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^2/(1/cos(c + d*x))^(7/2),x)

[Out]

int((a + a/cos(c + d*x))^2/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________